A Novel Rearrangement of a Benzo[b]thiepin Derivative ${ }^{1}$

By Philip M. Weintraub* and Arthur D. Sill
 (Merrell-National Laboratories, Division of Richardson-Merrell, Inc., Cincinnati, Ohio 45215)

Summary The unexpected transformation of 4-bromo-2,3-dihydrobenzo[b]thiepin-5(4H)-one (1) into 2,3-dihydro-
[1]benzothieno[3,2-b]furan (2) and 1,1a,7,7a-tetrahydro-benzo[b]cyclopropa[e]thiopyran-7-one (3) is reported.

THE recent report ${ }^{2}$ on the ring contraction of 4 -bromo-$2,3,4,5$-tetrahydrobenzo $[b]$ thiepin-5-ol to 2 -(2-bromoethyl)benzo $[b]$ thiophen prompts us to report our preliminary work

on a novel rearrangement of the thiepinone (1). It was recently reported that identifiable products could not be isolated from the reaction of (1) with a wide variety of bases. ${ }^{3}$ In our hands, reactions of (1) with $\mathrm{LiBr}-\mathrm{Li}_{2} \mathrm{CO}_{3}$ in refluxing HCONMe_{2} gave two crystalline compounds which we have identified as (2) (m.p. $58-60{ }^{\circ} \mathrm{C}$; 15% yield) and (3) (m.p. $70-71^{\circ} \mathrm{C}$; 1%) on the basis of their elemental and spectral analyses. \dagger Compound (2) was recovered unchanged from attempted reduction with LiAlH_{4}, whereas compound (3) gave the alcohol (4), m.p. $93-94{ }^{\circ} \mathrm{C}$, with LiAlH_{4}.

Scheme
We rationalize the formation of (2) as shown in the Scheme. A similar mechanism was proposed in ref. 2. We postulate that (3) is formed by anion formation α to the sulphur with subsequent intramolecular displacement of Br^{-}.

We thank Dr. E. H. W. Böhme for discussions.
(Received, 29th July 1975; Com. 869.)
\dagger All new compounds gave analytical figures for C, H, and S to within $\pm 0.20 \%$ of theory; spectral data, compound (2): $\delta\left(\mathrm{CDCl}_{3}\right)$ $3 \cdot 27$ and $5 \cdot 00$ (each $2 \mathrm{H}, \mathrm{t}, J 8 \cdot 5 \mathrm{~Hz}, 2-$ and $3-\mathrm{H}$, respectively), and $7 \cdot 13-7 \cdot 83(4 \mathrm{H}, \mathrm{ArH}) ; \nu_{\max }(\mathrm{KBr}) 1590,1450,755$, and $730 \mathrm{~cm}^{-1}$; $\lambda_{\max }(\mathrm{EtOH}) 210,251,304$, and $313 \mathrm{~nm} ; m / e 176\left(M^{+}, 100 \%\right), 147(74 \%)$, and $115(30 \%)$; the peak at $m / e 144\left(M^{+}-\mathrm{S}\right)$ was of $<5 \%$ intensity; compound $(3): \delta\left(\mathrm{CDCl}_{\mathrm{s}}\right) 1 \cdot 25-1.62(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 1.68-1.98(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{a}-\mathrm{and} 7 \mathrm{a}-\mathrm{H})$, and $7.02-7.62$ and $7.68-7.92$ (each $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) ; $\nu_{\text {max }}(\mathrm{KBr}) 1695,1000,1455,1310,910$, and $655 \mathrm{~cm}^{-1} ; m / e 176\left(M^{+}, 100 \%\right), 147(82 \%), 136(17 \%), 115(30 \%)$, and 108 (21\%).
${ }^{1}$ For previous paper in the series: Heterocycles, see P. M. Weintraub, J. Medicin. Chem., 1972, 15, 419.
${ }^{2}$ A. Chatterjee and B. K. Sen, J.C.S. Chem. Comm., 1974, 626.
${ }^{3}$ V. S. Traynelis, J. C. Sih, and D. M. Borgnaes, J. Org. Chem., 1973, 38, 2629.

